Math 1B

Midterm 3 Review

For sections 5.4-5.5 and 7.1-7.5:
Get together a group of classmates.
Make a copy of the following pages and integrals:

5.4	$5-46$	7.1	$3-46$	7.4	$7-54$
5.5	$7-73$	7.2	$1-35,47-49,51-52$	7.5	$1-82$
5.REV	$11-40$	7.3	$4-29$	$7 . R E V$	$1-38$

Cut them up, so each question is on a separate slip of paper.
Throw them in a pile and mix them up.
One at a time, randomly pick out a question from the pile and everyone solve it independently.
Compare solutions and discuss which one is fastest/easiest, and how you can recognize what method to use.

The following questions act as a review for 7.8.
[1] Determine if the following integrals converge or diverge. If an integral converges, find its value.
[a] $\int_{0}^{\infty} x^{2} e^{-3 x} d x$
[b] $\int_{0}^{\infty} \frac{1}{\sqrt[3]{x-1}} d x$
[c] $\int_{-\infty}^{\infty} \frac{1}{x^{2}+4} d x$
[d] $\int_{-\infty}^{\infty} \frac{x}{x^{2}+4} d x$
[e] $\int_{-\infty}^{0} \frac{e^{x}}{1+e^{x}} d x$
[f] $\int_{0}^{2} \frac{1}{\sqrt{4-x^{2}}} d x$
[g] $\int_{0}^{2} \frac{x}{\sqrt{4-x^{2}}} d x$
[h] $\int_{0}^{1} \frac{1}{x(\ln x)^{2}} d x$
[i] $\int_{0}^{\pi} \tan x d x$
[2] Determine if the following integrals converge or diverge. Justify your answer.
[a] $\int_{1}^{\infty} \frac{2+\sin x}{x} d x$
[b] $\int_{1}^{\infty} \frac{2+\sin x}{x^{2}} d x$
[c] $\int_{0}^{\infty} e^{-x^{2}} d x$
[d] $\int_{e}^{\infty} \frac{1}{\ln x} d x$
[e] $\int_{e}^{\infty} \frac{1}{x \ln x} d x$
[f] $\int_{2}^{\infty} \frac{x+1}{\sqrt{x^{4}-1}} d x$
[g] $\int_{1}^{\infty} \frac{\cos ^{2} x}{x e^{x}} d x$

Answers

[1]
[a] $\frac{2}{27}$
[b] diverges
[c] $\frac{\pi}{2}$
[d] diverges
[e] $\quad \ln 2$
[f] $\frac{\pi}{2}$
[g] 2
[h] diverges
[i] diverges
[2]
[a] diverges - compare to $\frac{1}{x}$
[b] converges - compare to $\frac{3}{x^{2}}$
[c] converges - compare to e^{-x}
[d] diverges - compare to $\frac{1}{x}$
[e] diverges - find antiderivative and take limit
[f] diverges - compare to $\frac{1}{x}$
[g] converges - compare to $\frac{1}{e^{x}}$

